

# BEYOND UNIT PROPAGATION IN SAT SOLVING

# Michael Kaufmann and Stephan Kottler

University of Tuebingen





10th International Symposium on Experimental Algorithms May 5 - 7, 2011 - Orthodox Academy of Crete, Kolimpari Chania, Greece





# WHY SAT?





Rest of the state of the state

Verification



Bounded Model Checking



Automotive Product Configuration

Plugin System

•



# WHY SAT?



Bounded Model Checking



Verification



Plugin System

eclipse





SAT-Solver



## **OUTLINE**

- Introduction
  - SAT Basics
- EXTENDING UNIT PROPAGATION
  - Idea
  - Matrix Approach
  - Alternative Approach
- EXPERIMENTS
- Conclusion





$$C_1 = \{\underline{I_1} \lor I_6\}$$
 $C_2 = \{\underline{I_6} \lor \underline{I_4}\}$ 
 $C_3 = \{\underline{I_4} \lor \overline{I_6} \lor I_3\}$ 
 $C_4 = \{\overline{I_2} \lor I_7\}$ 



$$C_{1} = \{\overline{I_{1}} \lor I_{6}\}$$

$$C_{2} = \{\overline{I_{6}} \lor \underline{I_{4}}\}$$

$$C_{3} = \{\underline{I_{4}} \lor \overline{I_{6}} \lor I_{3}\}$$

$$C_{4} = \{\overline{I_{2}} \lor I_{7}\}$$

Decisions







$$\begin{array}{l} \textbf{C}_1 = \{\overline{\textit{I}_1} \lor \textit{I}_6\} \\ \textbf{C}_2 = \{\overline{\textit{I}_6} \lor \underline{\textit{I}_4}\} \\ \textbf{C}_3 = \{\overline{\textit{I}_4} \lor \overline{\textit{I}_6} \lor \textit{I}_3\} \\ \textbf{C}_4 = \{\overline{\textit{I}_2} \lor \textit{I}_7\} \end{array}$$



- Decisions
- Propagation of assignments



$$\begin{array}{l} \textbf{\textit{C}}_1 = \{\overline{\textit{\textbf{I}}_1} \lor \textit{\textbf{I}}_6\} \\ \textbf{\textit{C}}_2 = \{\overline{\textit{\textbf{I}}_6} \lor \underline{\textit{\textbf{I}}_4}\} \\ \textbf{\textit{C}}_3 = \{\overline{\textit{\textbf{I}}_4} \lor \overline{\textit{\textbf{I}}_6} \lor \textit{\textbf{I}}_3\} \\ \textbf{\textit{C}}_4 = \{\overline{\textit{\textbf{I}}_2} \lor \textit{\textbf{I}}_7\} \end{array}$$



- Decisions
- Propagation of assignments



$$\begin{array}{l} C_1 = \{\overline{I_1} \vee I_6\} \\ C_2 = \{\overline{I_6} \vee \underline{I_4}\} \\ C_3 = \{\overline{I_4} \vee \overline{I_6} \vee I_3\} \\ C_4 = \{\overline{I_2} \vee I_7\} \end{array}$$



- Decisions
- Propagation of assignments





$$\begin{array}{l} C_1 = \{\overline{I_1} \lor I_6\} \\ C_2 = \{\overline{I_6} \lor \underline{I_4}\} \\ C_3 = \{\overline{I_4} \lor \overline{I_6} \lor I_3\} \\ C_4 = \{\overline{I_2} \lor I_7\} \end{array}$$

- Decisions
- Propagation of assignments







$$\begin{array}{l} \textbf{C}_1 = \{\overline{\textit{I}_1} \lor \textit{I}_6\} \\ \textbf{C}_2 = \{\overline{\textit{I}_6} \lor \underline{\textit{I}_4}\} \\ \textbf{C}_3 = \{\overline{\textit{I}_4} \lor \overline{\textit{I}_6} \lor \textit{I}_3\} \\ \textbf{C}_4 = \{\overline{\textit{I}_2} \lor \textit{I}_7\} \end{array}$$

- Decisions
- Propagation of assignments
- Conflict analysis







## BOOLEAN CONSTRAINT PROPAGATION

- search constitutes partial assignment  $\pi$
- ullet consider clauses that are unit under  $\pi$





# **BOOLEAN CONSTRAINT PROPAGATION**

- ullet search constitutes partial assignment  $\pi$
- ullet consider clauses that are unit under  $\pi$

# EXAMPLE (UNIT PROPAGATION)

$$\pi = \overline{\textit{I}_{4}}, \overline{\textit{I}_{5}}, \textit{I}_{6} \dots$$

 $C = \{ \frac{l_4}{l_5} \vee \frac{l_5}{l_8} \}$  is unit under  $\pi \Rightarrow l_8$  is implied







## BOOLEAN CONSTRAINT PROPAGATION

- ullet search constitutes partial assignment  $\pi$
- ullet consider clauses that are unit under  $\pi$

# EXAMPLE (UNIT PROPAGATION)

$$\pi=\overline{l_4},\overline{l_5},l_6\dots$$
  $C=\{\frac{l_4}{l_9}\vee \frac{l_5}{l_9}\vee l_8\}$  is unit under  $\pi\Rightarrow l_8$  is implied

- very efficient implementations
- > 80% of runtime





#### EXAMPLE

$$\pi = \overline{l_4}, \overline{l_5}, l_6 \dots$$

$$C = \{ \frac{l_4}{1} \lor \frac{l_5}{1} \lor l_1 \lor l_2 \lor l_3 \}$$





#### EXAMPLE

$$\pi = \overline{l_4}, \overline{l_5}, l_6 \dots$$
 $C = \{ \frac{l_4}{\sqrt{l_5}} \lor l_1 \lor l_2 \lor l_3 \}$ 

#### What can we do?





#### **EXAMPLE**

$$\pi = \overline{l_4}, \overline{l_5}, l_6 \dots$$

$$C = \{ l_4 \lor l_5 \lor l_1 \lor l_2 \lor l_3 \}$$

Clearly: one of  $l_1, l_2, l_3$  has to be assigned





#### **EXAMPLE**

$$\pi = l_4, l_5, l_6 \dots$$

$$C = \{ l_4 \lor l_5 \lor l_1 \lor l_2 \lor l_3 \}$$

Clearly: one of  $l_1, l_2, l_3$  has to be assigned

Might be that all unassigned literals have common *direct* implication:

e.g. 
$$l_1 \Rightarrow l_7$$
,  $l_2 \Rightarrow l_7$ ,  $l_3 \Rightarrow l_7$ 





#### **EXAMPLE**

$$\pi = l_4, l_5, l_6 \dots$$

$$C = \{ l_4 \lor l_5 \lor l_1 \lor l_2 \lor l_3 \}$$

Clearly: one of  $l_1, l_2, l_3$  has to be assigned

Might be that all unassigned literals have common *direct* implication:

e.g. 
$$l_1 \Rightarrow l_7$$
,  $l_2 \Rightarrow l_7$ ,  $l_3 \Rightarrow l_7$ 

/ can already be assigned!







## DIRECT IMPLICATIONS IN CNF

$$C_1 = \{\overline{I_1} \lor I_9\}$$
 $C_2 = \{\overline{I_2} \lor I_9\}$ 
 $C_3 = \{\overline{I_3} \lor I_7\}$ 
 $C_4 = \{\overline{I_9} \lor I_7\}$ 





### DIRECT IMPLICATIONS IN CNF

$$C_{1} = \{\overline{I_{1}} \lor I_{9}\}$$

$$C_{2} = \{\overline{I_{2}} \lor I_{9}\}$$

$$C_{3} = \{\overline{I_{3}} \lor I_{7}\}$$

$$C_{4} = \{\overline{I_{9}} \lor I_{7}\}$$



Implication graph induced by binary clauses



## QUESTION?

Is there a common successor for a set of vertices?





## QUESTION?

Is there a common successor for a set of vertices?







### QUESTION?

Is there a common successor for a set of vertices?



#### TRIVIAL APPROACH

Keep one bit for each pair of literals  $(I_i, I_j)$  which is set if  $I_i$  and  $I_j$  have a common successor





## QUESTION?

Is there a common successor for a set of vertices?



#### TRIVIAL APPROACH

Keep one bit for each pair of literals  $(I_i, I_j)$  which is set if  $I_i$  and  $I_j$  have a common successor





## MATRIX COMPRESSION







### MATRIX COMPRESSION



#### ONE IDEA:

In a DAG two vertices have common successor iff they reach same sink

⇒ store reachability of sinks





### MATRIX COMPRESSION



#### ONE IDEA:

In a DAG two vertices have common successor iff they reach same sink

 $\Rightarrow$  store reachability of sinks

. . .

... more compression techniques to make it work! [see paper!]



### REVIEW

- matrices are still too big for some SAT instances
- adding many binary clauses requires matrix updates
- quite some work for implementation







# SINKS AND ROOTS

#### COMPLEMENTARY COMPONENTS

Flipped sinks of one component are roots in complementary component.







### SINKS AND ROOTS

#### COMPLEMENTARY COMPONENTS

Flipped sinks of one component are roots in complementary component.



Still valid if complementary components are connected!





#### IDEA

Collect and cache information during normal unit propagation of binary clauses.

$$C_{1} = \{\overline{I_{1}} \lor I_{9}\}$$

$$C_{2} = \{\overline{I_{2}} \lor I_{9}\}$$

$$C_{3} = \{\overline{I_{3}} \lor I_{7}\}$$

$$C_{4} = \{\overline{I_{9}} \lor I_{7}\}$$



| _ | _ `          |              |              |              |              |              |              |              |              |
|---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|   | $I_1$        | $I_2$        | $I_3$        | $I_4$        | $I_5$        | $I_6$        | 17           | $I_8$        | <i>l</i> 9   |
|   | $\downarrow$ |
|   | -            | -            | -            | -            | -            | -            | -            | -            | -            |





#### IDEA

Collect and cache information during normal unit propagation of binary clauses.

$$C_{1} = \{ \underline{I_{1}} \lor I_{9} \}$$

$$C_{2} = \{ \underline{I_{2}} \lor I_{9} \}$$

$$C_{3} = \{ \underline{I_{3}} \lor I_{7} \}$$

$$C_{4} = \{ I_{9} \lor I_{7} \}$$



| <i>I</i> <sub>1</sub> | $I_2$        | $I_3$        | $I_4$        | $I_5$        | $I_6$        | 17           | $I_8$        | l <sub>9</sub> |
|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|
| $\downarrow$          | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$   |
| -                     | -            | 17           | -            | -            | -            | -            | -            | -              |



#### **IDEA**

Collect and cache information during normal unit propagation of binary clauses.

$$C_1 = \{\overline{I_1} \lor I_9\}$$
  
 $C_2 = \{\overline{I_2} \lor I_9\}$   
 $C_3 = \{\overline{I_3} \lor I_7\}$   
 $C_4 = \{\overline{I_9} \lor I_7\}$ 



| <i>I</i> <sub>1</sub> | $I_2$        | $I_3$        | $I_4$        | $I_5$        | $I_6$        | 17           | l <sub>8</sub> | <i>l</i> 9   |
|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|
| $\downarrow$          | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$   | $\downarrow$ |
| _                     | -            | 17           | -            | -            | -            | -            | -              | 17           |
|                       |              |              |              |              |              |              |                |              |





#### **IDEA**

Collect and cache information during normal unit propagation of binary clauses.

$$C_{1} = \{\overline{I_{1}} \lor I_{9}\}$$

$$C_{2} = \{\underline{I_{2}} \lor I_{9}\}$$

$$C_{3} = \{\underline{I_{3}} \lor I_{7}\}$$

$$C_{4} = \{\overline{I_{9}} \lor I_{7}\}$$



| . α                   | lag labio.   |              |              |                       |                       |              |                       |                  |  |  |
|-----------------------|--------------|--------------|--------------|-----------------------|-----------------------|--------------|-----------------------|------------------|--|--|
| <i>I</i> <sub>1</sub> | $I_2$        | $I_3$        | $I_4$        | <i>I</i> <sub>5</sub> | <i>I</i> <sub>6</sub> | 17           | <i>I</i> <sub>8</sub> | - I <sub>9</sub> |  |  |
| $\downarrow$          | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$          | $\downarrow$          | $\downarrow$ | $\downarrow$          | $\overline{}$    |  |  |
| 17                    | -            | 17           | -            | -                     | -                     | -            | -                     | 17               |  |  |
|                       |              |              |              |                       |                       |              |                       |                  |  |  |





#### IDEA

Collect and cache information during normal unit propagation of binary clauses.

$$C_{1} = \{\overline{I_{1}} \lor I_{9}\}$$

$$C_{2} = \{\overline{I_{2}} \lor I_{9}\}$$

$$C_{3} = \{\overline{I_{3}} \lor I_{7}\}$$

$$C_{4} = \{\overline{I_{9}} \lor I_{7}\}$$



### Tan Tahla.

| ıα                    | rag rabio.   |              |              |                       |                       |              |                       |                  |  |  |
|-----------------------|--------------|--------------|--------------|-----------------------|-----------------------|--------------|-----------------------|------------------|--|--|
| <i>I</i> <sub>1</sub> | $I_2$        | $I_3$        | $I_4$        | <i>I</i> <sub>5</sub> | <i>I</i> <sub>6</sub> | 17           | <i>I</i> <sub>8</sub> | - I <sub>9</sub> |  |  |
| $\downarrow$          | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$          | $\downarrow$          | $\downarrow$ | $\downarrow$          | $\overline{}$    |  |  |
| 17                    | 17           | 17           | -            | -                     | -                     | -            | -                     | 17               |  |  |
|                       |              |              |              |                       |                       |              |                       |                  |  |  |



## USING SINK TAGS

| <i>I</i> <sub>1</sub> | <i>I</i> <sub>2</sub> | l <sub>3</sub> | <i>I</i> <sub>4</sub> | <i>I</i> <sub>5</sub> | <i>I</i> <sub>6</sub> | 17           | <i>I</i> <sub>8</sub> | <i>l</i> <sub>9</sub> |
|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|--------------|-----------------------|-----------------------|
| $\downarrow$          | $\downarrow$          | $\downarrow$   | $\downarrow$          | $\downarrow$          | $\downarrow$          | $\downarrow$ | $\downarrow$          | $\downarrow$          |
| 17                    | 17                    | 17             | -                     | -                     | -                     | -            | -                     | 17                    |



## USING SINK TAGS

### Tag Table:

| <i>I</i> <sub>1</sub> | $I_2$        | $I_3$        | $I_4$        | <i>I</i> <sub>5</sub> | <i>I</i> <sub>6</sub> | 17           | <i>l</i> <sub>8</sub> | <i>l</i> 9            |
|-----------------------|--------------|--------------|--------------|-----------------------|-----------------------|--------------|-----------------------|-----------------------|
| $\downarrow$          | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$          | $\downarrow$          | $\downarrow$ | $\downarrow$          | $\downarrow$          |
| 17                    | 17           | 17           | -            | -                     | -                     | -            | -                     | <i>l</i> <sub>7</sub> |

#### **EXAMPLE**

$$\pi = \overline{l_4}, \overline{l_5}, l_6 \dots$$
 $C = \{ l_4 \lor l_5 \lor l_1 \lor l_2 \lor l_3 \}$ 

What can we do?



## USING SINK TAGS

### Tag Table:

| 1/1 | <i>l</i> <sub>2</sub> | <i>l</i> <sub>3</sub> | <i>I</i> <sub>4</sub> | <i>I</i> <sub>5</sub> | <i>I</i> <sub>6</sub> | 17 | <i>I</i> <sub>8</sub> | <i>l</i> <sub>9</sub> |
|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----|-----------------------|-----------------------|
|     |                       |                       |                       |                       |                       |    |                       | $\downarrow$          |
| 17  | 17                    | 17                    | -                     | -                     | -                     | -  | -                     | <i>l</i> <sub>7</sub> |

#### **EXAMPLE**

$$\pi = \overline{l_4}, \overline{l_5}, l_6 \dots$$
 $C = \{ l_4 \lor l_5 \lor l_1 \lor l_2 \lor l_3 \}$ 

What can we do? ⇒ Simple table lookup



## MATRIX VS. TAGS

- Tests on 500 hard instances of previous SAT competitions
- Timeout for each instance 1200 seconds





# MATRIX VS. TAGS

- Tests on 500 hard instances of previous SAT competitions
- Timeout for each instance 1200 seconds

|                           | Mat      | rix     | Ta      | gs      |
|---------------------------|----------|---------|---------|---------|
|                           | avg      | max     | avg     | max     |
| ext. Prop / Decisions [%] | 63.24    | 1581.93 | 33.71   | 1340.64 |
| Implied Binaries          | 16816.36 | 235042  | 9100.49 | 152728  |
| Implied Units             | 101.48   | 2722    | 146.71  | 4386    |



# RUNTIME





## **CONCLUSION**

- Analysed Boolean Constraint Propagation
- Most quality improvement with matrix approach
   → but bad runtime
- Tag approach still clearly better than Unit Propagation → comes for free!!



## **CONCLUSION**

- Analysed Boolean Constraint Propagation
- Most quality improvement with matrix approach
   → but bad runtime
- Tag approach still clearly better than Unit Propagation → comes for free!!

Thank you!